Adaptive mixture density estimation

نویسندگان

  • Carey E. Priebe
  • David J. Marchette
چکیده

A~trac t -A recursive, nonparametric method is developed for performing density estimation derived from mixture models, kernel estimation and stochastic approximation. The asymptotic performance of the method, dubbed "adaptive mixtures" (Priebe and Marchette, Pattern Recognition 24, 1197-1209 (1991)) for its data-driven development of a mixture model approximation to the true density, is investigated using the method of sieves. Simulations are included indicating convergence properties for some simple examples.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Statistical Wavelet-based Image Denoising using Scale Mixture of Normal Distributions with Adaptive Parameter Estimation

Removing noise from images is a challenging problem in digital image processing. This paper presents an image denoising method based on a maximum a posteriori (MAP) density function estimator, which is implemented in the wavelet domain because of its energy compaction property. The performance of the MAP estimator depends on the proposed model for noise-free wavelet coefficients. Thus in the wa...

متن کامل

Spades and Mixture Models

This paper studies sparse density estimation via l1 penalization (SPADES). We focus on estimation in high-dimensional mixture models and nonparametric adaptive density estimation. We show, respectively, that SPADES can recover, with high probability, the unknown components of a mixture of probability densities and that it yields minimax adaptive density estimates. These results are based on a g...

متن کامل

Adaptive mixtures: Recursive nonparametric pattern recognition

-We develop a method of performing pattern recognition (discrimination and classification) using a recursive technique derived from mixture models, kernel estimation and stochastic approximation. Unsupervised learning Density estimation Kernel estimator Mixture model Stochastic approximation Recursive estimation

متن کامل

The Development of Maximum Likelihood Estimation Approaches for Adaptive Estimation of Free Speed and Critical Density in Vehicle Freeways

The performance of many traffic control strategies depends on how much the traffic flow models have been accurately calibrated. One of the most applicable traffic flow model in traffic control and management is LWR or METANET model. Practically, key parameters in LWR model, including free flow speed and critical density, are parameterized using flow and speed measurements gathered by inductive ...

متن کامل

Adaptive Mixture of Student-t Distributions as a Flexible Candidate Distribution for Efficient Simulation

This paper presents the R package AdMit which provides flexible functions to approximate a certain target distribution and it provides an efficient sample of random draws from it, given only a kernel of the target density function. The core algorithm consists of the function AdMit which fits an adaptive mixture of Student-t distributions to the density of interest via its kernel function. Then,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Pattern Recognition

دوره 26  شماره 

صفحات  -

تاریخ انتشار 1993